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TOTAL INCREMENT THEOREM 

 

 

 

INCREMENTS 

 

The increment  of a variable x is the change in x as it increases or decreases from 

one value  to another value .  Here,  and we may write 

. 

xδ

0x x= 1x x= 1x x xδ = −

1 0x x δ= +

 

If the variable x is given an increment  from , (i.e., if x changes from 

0 he function (y f x= mented from (y f x=

xδ 0x x= 0x x=  

x x xδ= + ) ) )0

( ) ( )0y f x x f xδ δ= + − 0 .  The ratio 

 
( ) ( )0 0f x x f xy

x x

δδ
δ δ

+ −
=  

is called the average rate of change of the function in the interval between  

and  
0x x=

0x x δ= + x

 

 

THE DERIVATIVE 

The derivative of a function  with respect to x at the point  is defined 

as 

( )y f x= 0x x=

 
( ) ( )0 0

0 0
lim lim , provided this limit exists
x x

f x x f xdy y
dx x xδ δ

δδ
δ δ→ →

+ −
= =  

The derivative of  can have any of the following notations: ( )y f x=
d

y
dx

, 
dy
dx

, y , y , 

 or 

′ �

( )f x′ ( )
d

f x
dx
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TOTAL INCREMENT THEOREM 

 

A function of a single variable may be expanded about a point using Taylor's 

theorem to give the series 
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0 0( ), ( ), etcf x f x′ ′′ "  are derivatives of the function  evaluated at .   is 

the remainder after n terms and 

( )f x 0x x= nR
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Using the increment  the Taylor series can be written as 0x x xδ = −

 
( ) ( )2 3

0 0 0 0( ) ( ) ( ) ( ) ( )
2! 3!
x x

f x f x x f x f x f x
δ δ

δ ′ ′′ ′′′= + + + + "  

If  is small then xδ ( ) ( )2 3, ,x xδ δ … are of second order and small and we may write 

as an approximation (the linearisation of f ) 

  0 0( ) ( ) ( )f x f x x f xδ ′+�

Also, if we write ( )y y x=  then ( )0y y x= 0  and we have an expression for the 

increment ( ) ( )0 0y y x y x y yδ = − = −  as 

  0( )y y x xδ δ′�

For a function of two variables, say , the Taylor series expansion of z 

about  is 

( ,z z x y= )

0 0,x x y y= =

 

( ) ( ) ( )

( ) ( ) ( )( )

0 0 0 0
0 0

2 2
2 2

0 0 0 02 2
00 0 0

,

1
2!

z z
z z x y x x y y

x y

z z f f
x x y y x x y y

x y x y

∂ ∂
= + − + −

∂ ∂

⎧ ⎫⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪+ − + − + − − +⎨ ⎬⎪ ⎪∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
"

 

where ( )0 0,z x y  is the function z evaluated at  and , and 0x x= 0y y=
2

2
0 00

, , , e
z z z
x y x

∂ ∂ ∂
∂ ∂ ∂

tc  are partial derivatives of the function z evaluated at  

and . 

0x x=

0y y=
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)

Again, using the increments  and , and ignoring 

terms involving products we may write that for  then 

0 0,x x x y y yδ δ= − = − 0z z zδ = −

( ,z z x y=

 
z z

z x
x y

δ δ
∂ ∂

+
∂ ∂

� yδ

)

 

We may extend this to functions of three or and more variables and write the Total 

Increment Theorem as 

 

For a function  the total increment  is ( , , ,w w x y z t= … wδ

 
w w w w

w x y z
x y z t

δ δ δ δ
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

� " tδ  

 

A geometric interpretation of this approximation for two independent variables is 

given by the area of a rectangle WXYZ whose sides are h and w and area is 

 A h w= ×
 

width  w

δw

W
X

YZ

he
ig

ht
 h

δh
δwδh ×

 

Figure 1 

Remembering that by definition  

and  where  and 

, the increment  is 

0A A Aδ= +

0A A Aδ = − 0A h= w

)( )(A h h w wδ δ= + + Aδ

  

( )( )A h h w w hw

hw h w w h h w hw

h w w h h w

δ δ δ

δ δ δ δ

δ δ δ δ

= + + −

= + + + −

= + +

 

The Total Increment Theorem gives  as Aδ

 

A A
A h

h w
w h h w

δ δ

δ δ

∂ ∂
+

∂ ∂
= +

� wδ

yδ

 

 

 

We can see here that the increment  given by the Total Increment Theorem 

differs from the true  by the value , which is the small area in the top-right 

corner of Figure 1.  If the increments  are small then the product  

Aδ

Aδ h wδ δ

 and hδ h wδ δ
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PN

φ

PN δφ

PN

will be very much smaller and the Total Increment Theorem may give a good 

approximation of the increment . Aδ

 

 

SOME SIMPLE SURVEYING APPLICATIONS OF THE TOTAL INCREMENT 

THEOREM 

 

In surveying applications, measured quantities can be affected by systematic errors or 

constant errors.  Systematic errors are those that accord to some law or rule, say for 

example, the correction of EDM distances for atmospheric conditions (temperature 

and pressure).  Atmospheric corrections will vary according to the conditions and if 

they are not made then EDM distances will be in error.  Constant errors are those 

whose sign and magnitude do not vary.  Again, using EDM as an example, if the 

instrument index error is not allowed for (i.e., the measurement is not corrected for 

the known error) EDM distances will be affected by a constant amount.  The effects 

of systematic and constant errors in surveying measurements can be determined by 

using the Total Increment Theorem. 

 

Example 1 

 

Say a bearing φ  and distance s is measured from a fixed point A to a point P to 

determine its coordinates.  The coordinates of P are given by 

  
sin

cos

P A

P A

E E s

N N s

φ

φ

= +

= +

and we say that  are functions of the independent variables s and φ   and PE

  
( )

( )

,

,

P P

P P

E E s

N N s

φ

φ

=

=

If the measurements s and  are affected by systematic or constant errors  

then the "error" in the coordinates  induced by  are 

 given by the Total Increment Theorem as 

φ  and sδ δ

 and PE  and sδ

 and PEδ δ
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( ) ( )

( ) ( )
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cos sin
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Note here that the increments (or errors)  are the sums of separate 

increment terms, one of which is negative.  In most applications of the Total 

Increment Theorem we would wish to estimate the 

 and PEδ δ

maximum values given errors that 

don't exceed certain limits, say  and ; and in such cases we would write sδ± δφ±

 
( ) ( )

( ) ( )

max

max

sin cos

cos sin

E s s

N s s

δ φ δ φ

δ φ δ φ

+

+

�

�

δφ

δφ
 

 

Say the measured distance is 165.30 0.01 ms = ±  and the measured bearing is 

, i.e., we are saying that the constant or systematic errors do 

not exceed 

126 31 00 10φ ′ ′′ ′= D ′±

0.01 msδ =  or  10 4.8481 05 radiansEδφ ′′= = −

 
max

max

0.0080 0.0048 0.0128 m

0.0060 0.0064 0.0124 m

E

N

δ

δ

+ − =

− + =

�

�
 

 

We could verify this result by computation using the values , 

 and  in all combinations for the 

change in east and north coordinates  

max 165.31s =

min 165.29s = max min126 31 10 , 126 30 50φ φ′ ′′ ′ ′= =D ′D

,E N∆ ∆

  

max max

max min

min max

min min

max max

max min

min max

min min

sin 132.8522 m

sin 132.8617 m

sin 132.8361 m

sin 132.8457 m

cos 98.3752 m

cos 98.3624 m

cos 98.3633 m

 cos 98.3505 m

s

s
E

s

s

s

s
N

s

s

φ

φ

φ

φ

φ

φ

φ

φ

⎧ =⎪⎪⎪⎪ =⎪⎪∆ = ⎨⎪ =⎪⎪⎪⎪ =⎪⎩
⎧ = −

=−
∆ = ⎨ = −

=−

⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎩

 5 



RMIT  Geospatial Science 

 

 

The range in  is 0.0256 m and in  is 0.0247 m, and they can be interpreted 

as twice the increments  and , which by inspection, we can see to be 

correct.  This is a practical verification of a very useful tool for the estimation of the 

effects of errors on computed quantities. 

E∆ N∆

maxEδ maxNδ

 

The Total Increment Theorem can also be used to assess the need for rigorously 

computed or observed quantities in certain formula. 

 

Example 2 

 

Say that I am observing a radiation to occupation and I wish to compute the offset to 

a traverse line.  The distance from the instrument to the occupation is 10 ms =  and 

the angle between the traverse and the radiation is .  The offset .  

Now assume that the distance s is exact, i.e., there is no error in the distance and the 

offset x is a function of the angle θ  only.  Let's say that I wish to be able to compute 

the offset correct to 0.005 m; how accurately do I need to measure the angle? 

30θ = D sinx s θ=

 

We can use the Total Increment Theorem as follows: 

  sinx s θ=

then 

 ( ) ( )sin cosx s sδ θ δ θ+� δθ  

but s is known without error, hence  and 0sδ =

 ( )cosx sδ θ� δθ  

This equation can be re-arranged as 

 
0.005

5.774 04 radians 119
cos 10 cos 30

x
E

s
δ

δθ
θ

′′= = −D� �  

So, we can say that we only need to observe the angle to an accuracy of  for a 

computational accuracy of 0.005 m in the offset. 

02′±
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Example 3 

 

In Map Grid Australia (MGA) computations, east and north coordinates are 

computed using plane distances L.  In the field we measure slope distances and 

reduce them to horizontal distances H on a local plane and these local plane distances 

H are assumed to be at a mean height  above the reference ellipsoid.  Next, the 

local plane distances H are reduced to chord-distances c of the ellipsoid by a height 

scale factor.  c is the chord of an arc-distance s on the ellipsoid, and for short lines 

(<10 km) the ellipsoid can be approximated by a sphere of radius R  and the 

difference between the arc-distance s and chord-distance c is negligible.  So for short 

lines (<10 km) we have 

mh

α

 
m

R
s H

R h
α

α

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 

where 
m

R
R h

α

α

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 is Height Scale Factor and R  is the radius of curvature of the 

reference ellipsoid in the direction of the line. 

α

 

Arc-distances s are converted into plane distances L by applying a Line Scale Factor 

K.  This process is given by 

 Line Scale Factor Height Scale Factor
m

R
L Ks K H H

R h
α

α

⎛ ⎞⎟⎜ ⎟= = = × ×⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 

The product of the two scale factors is known as the Combined Scale Factor 

 

Now, how accurately do we need to know  when computing plane distances L 

given the local plane distance H, the line scale factor K and the mean height of the 

local plane ?   

Rα

mh

 

It is known that the mean radius of curvature of the reference ellipsoid has maximum 

and minimum values in Victoria of approximately 6378700 m and 6371400 m.  This is 

a variation of 7300 m (7.3 km).  Let's say we choose a value of  and 

we will accept that  (i.e., a 20 km error in R ). 

6372000 mRα =

20000 mRαδ = α
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The Total Increment Theorem gives 

 
( ) ( )

( )2 2
m

m
m m

h R
L R h

R h R h
α

α
α α

δ δ δ
⎧ ⎫⎪ ⎪⎪ ⎪− ×⎨ ⎬⎪ ⎪+ +⎪ ⎪⎩ ⎭

� K H  

Let's also assume that the mean height  is known without error (i.e., 

), the local plane horizontal distance 

500 mmh =

0mhδ = 1000 mH =  and the Line Scale Factor 

.  Our equation becomes 1.000000K =

 
( )

( )2
m

m

h
L R

R h α
α

δ δ
⎧ ⎫⎪ ⎪⎪ ⎪ ×⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭

� K H  

Substituting in the values for  gives , , ,  and mh R R K Hα αδ 0.000246 mLδ = .  So we 

may conclude that a value of  is suitable for use anywhere in 

Victoria. 

6372000 mRα =

 

It should be noted that the range of L for an error  is  where 

 and  giving the 

Lδ max minL L−

maxL L δ= + L LminL L δ= − ( )range 2 0.000492 mLδ= = . 

This can be verified by computation where 

 
max

max

999.921783 m

999.921291 m

m

m

R R
L KH

R R h

R R
L KH

R R h

α α

α α

α α

α α

δ
δ

δ
δ

⎛ ⎞+ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ + +⎝ ⎠

⎛ ⎞− ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ − +⎝ ⎠

 

and 

 ( )range 999.921783 999.921291 0.000492 2 Lδ= − = =  
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